Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7697, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565624

RESUMO

The rapid increase in biomedical publications necessitates efficient systems to automatically handle Biomedical Named Entity Recognition (BioNER) tasks in unstructured text. However, accurately detecting biomedical entities is quite challenging due to the complexity of their names and the frequent use of abbreviations. In this paper, we propose BioBBC, a deep learning (DL) model that utilizes multi-feature embeddings and is constructed based on the BERT-BiLSTM-CRF to address the BioNER task. BioBBC consists of three main layers; an embedding layer, a Long Short-Term Memory (Bi-LSTM) layer, and a Conditional Random Fields (CRF) layer. BioBBC takes sentences from the biomedical domain as input and identifies the biomedical entities mentioned within the text. The embedding layer generates enriched contextual representation vectors of the input by learning the text through four types of embeddings: part-of-speech tags (POS tags) embedding, char-level embedding, BERT embedding, and data-specific embedding. The BiLSTM layer produces additional syntactic and semantic feature representations. Finally, the CRF layer identifies the best possible tag sequence for the input sentence. Our model is well-constructed and well-optimized for detecting different types of biomedical entities. Based on experimental results, our model outperformed state-of-the-art (SOTA) models with significant improvements based on six benchmark BioNER datasets.


Assuntos
Idioma , Semântica , Processamento de Linguagem Natural , Benchmarking , Fala
2.
Sci Rep ; 13(1): 4979, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973386

RESUMO

We still do not have an effective treatment for Alzheimer's disease (AD) despite it being the most common cause of dementia and impaired cognitive function. Thus, research endeavors are directed toward identifying AD biomarkers and targets. In this regard, we designed a computational method that exploits multiple hub gene ranking methods and feature selection methods with machine learning and deep learning to identify biomarkers and targets. First, we used three AD gene expression datasets to identify 1/ hub genes based on six ranking algorithms (Degree, Maximum Neighborhood Component (MNC), Maximal Clique Centrality (MCC), Betweenness Centrality (BC), Closeness Centrality, and Stress Centrality), 2/ gene subsets based on two feature selection methods (LASSO and Ridge). Then, we developed machine learning and deep learning models to determine the gene subset that best distinguishes AD samples from the healthy controls. This work shows that feature selection methods achieve better prediction performances than the hub gene sets. Beyond this, the five genes identified by both feature selection methods (LASSO and Ridge algorithms) achieved an AUC = 0.979. We further show that 70% of the upregulated hub genes (among the 28 overlapping hub genes) are AD targets based on a literature review and six miRNA (hsa-mir-16-5p, hsa-mir-34a-5p, hsa-mir-1-3p, hsa-mir-26a-5p, hsa-mir-93-5p, hsa-mir-155-5p) and one transcription factor, JUN, are associated with the upregulated hub genes. Furthermore, since 2020, four of the six microRNA were also shown to be potential AD targets. To our knowledge, this is the first work showing that such a small number of genes can distinguish AD samples from healthy controls with high accuracy and that overlapping upregulated hub genes can narrow the search space for potential novel targets.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Algoritmos , Biomarcadores , Fatores de Transcrição
3.
Front Endocrinol (Lausanne) ; 13: 1084656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743910

RESUMO

MicroRNAs (miRNAs) are critical regulators of gene expression in healthy and diseased states, and numerous studies have established their tremendous potential as a tool for improving the diagnosis of Type 2 Diabetes Mellitus (T2D) and its comorbidities. In this regard, we computationally identify novel top-ranked hub miRNAs that might be involved in T2D. We accomplish this via two strategies: 1) by ranking miRNAs based on the number of T2D differentially expressed genes (DEGs) they target, and 2) using only the common DEGs between T2D and its comorbidity, Alzheimer's disease (AD) to predict and rank miRNA. Then classifier models are built using the DEGs targeted by each miRNA as features. Here, we show the T2D DEGs targeted by hsa-mir-1-3p, hsa-mir-16-5p, hsa-mir-124-3p, hsa-mir-34a-5p, hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-129-2-3p, and hsa-mir-146a-5p are capable of distinguishing T2D samples from the controls, which serves as a measure of confidence in the miRNAs' potential role in T2D progression. Moreover, for the second strategy, we show other critical miRNAs can be made apparent through the disease's comorbidities, and in this case, overall, the hsa-mir-103a-3p models work well for all the datasets, especially in T2D, while the hsa-mir-124-3p models achieved the best scores for the AD datasets. To the best of our knowledge, this is the first study that used predicted miRNAs to determine the features that can separate the diseased samples (T2D or AD) from the normal ones, instead of using conventional non-biology-based feature selection methods.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Comorbidade , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Aprendizado de Máquina , MicroRNAs/genética , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...